
Important UNIX Concepts 6-1

Chapter 6: Important UNIX Concepts

This chapter introduces you to the UNIX command structure, and to many
important commands and concepts. The features introduced in this chapter
constitute the core of the UNIX operating system, and many of these tools are
quite powerful and flexible. Some of the features are shell-specific, and we
provide the distinctions where necessary.

6.1 Processing Environment

6.1.1 Programs, Commands and Processes

A program is an executable file. A program is invoked by entering its
filename (which is the command associated with the executable), often
followed by options, arguments, and/or parameters on the command line. The
shell allows three types of commands:

• an executable file that contains object code produced by a compilation of
source code

• an executable file that contains a sequence of shell command lines (a shell
script)

• an internal shell command (built-in command)

The first two command types may include standard UNIX utilities, commercial
products, and user-written programs. All the shells allow both interactive
command entry in which the commands are typed at the keyboard and
executed one by one, and scripted entry in which commands are put in a file,
called a shell script, and executed sequentially when the script is run. See
section 5.4 Shell Scripts for a brief discussion of the uses of shell scripts and
how to execute them.

Shells execute commands by means of processes. A process is an instance of
a program in execution. A process can interact with the kernel by invoking a
well defined set of system calls. The system calls instruct the kernel to perform
particular operations for the calling program and they can exchange data
between the kernel and the process. For example, a process can use system
calls to create new processes and terminate running processes.

6-2 Important UNIX Concepts

When a terminal session begins, the operating system starts a single parent
process. Creating a new process from an existing process is called forking.
This new process is called a child process or subprocess. Each process has a
unique process identification number (PID). A subprocess can fork another
process and become a parent. A process which is not receiving input from the
terminal, either running or stopped, is said to be in the background (see section
6.5 Job Control). The ps command can be used to print the status of active
processes. See the man pages for information about its options.

When you give the shell a command associated with a compiled executable or
shell script, the shell creates, or forks, a new process called a subshell. The
new process runs the system call exec which invokes yet another program to
execute the command in place of the current process (the subshell). Unless the
subprocess runs in the background, the parent process remains dormant until
its subprocess completes or is stopped. Then control returns to the parent.

To execute most built-in commands, the shell forks a subshell which executes
the command directly (no exec system call). For the built-in commands cd,
set, alias and source, the current shell executes the command; no
subshell is forked. You can, however, cause the shell to fork a process by
enclosing the command in parentheses. The following example illustrates this
(use of the semicolon is described in section 9.2 Special Characters
(Metacharacters); and the commands cd (change directory) and pwd (print
working directory) are described in section 7.5 Manipulating Directories):

% cd /dir1; pwd displays /dir1 (no subshell is forked)

% (cd /dir2; pwd) due to the parentheses, a subshell is forked, then
the commands are issued; displays /dir2.
Control then returns to the parent process.

% pwd displays /dir1 since the current process was
unaffected by the previous command line.

Most built-in commands exist in all shells, but there may be differences
regarding arguments, options, or output format between the shell-specific
versions of each command. Some commands for a given shell are not
available on all platforms. Refer to a UNIX text for lists of built-in commands.

You do not need to distinguish between built-in and other commands to
execute them. However in order to find help in the man pages, you do need to
know which is which. Help on shell commands is usually found under the
shell name, for example under man tcsh or man bash. Some platforms
provide man pages for built-in commands, however in general you may find it
easier to look in a reference book! Help on other commands is found directly
under man <command>.

Important UNIX Concepts 6-3

6.1.2 Command Interpretation by the Shell

When the shell receives a command, it interprets it in a series of three (for
Bourne shell family) or four (for C shell family) passes. Naturally, if the
command is an alias (see section 9.7 The Alias Command), it requires an
additional pass up front for substitution.

• The first pass for the C shell family looks for the ! character, and
replaces it with the previous command (see section 6.3 Command Recall
for information on command recall).

• The next pass (the first pass for the Bourne shell family) replaces
wildcards (used in filename expansion, redirection, and regular
expressions; see sections 7.2.2 Filename Expansion and Wildcard
Characters, 6.4.2 Standard Input and Output Redirection, and 6.4.5
Regular Expressions, respectively).

• The next pass looks for the $ character in order to replace variable
names with their values (see section 9.5 Shell Variables and Environment
Variables).

• The final pass splits the command line elements by whitespace to arrive at
the final, literal command that the shell must execute.

There are ways to prevent interpretation of special characters in each of these
passes. Preceding a character with a backslash (\) works for all special
characters; wildcards can be enclosed in single or double quotes; variables can
be enclosed in single quotes; and whitespace is ignored if the argument
containing the whitespace is enclosed in single or double quotes.

To illustrate the operations that take place in each pass, the following table
presents a series of three examples using the echo command and the same
string, first in single quotes, then double quotes, and finally with no quotes.
The echo command writes the string to standard output. Assume that the
files that match q* are qq and qqq, and the value of the variable a is foo.

Command --> echo 'q*
$a x'

echo "q*
$a x"

echo q* $a
x

After first
passa, only
wildcards are
interpreted.

echo 'q*
$a x'

(no wildcard expan-
sion due to quotes)

echo "q*
$a x"

(no wildcard expan-
sion due to quotes)

echo qq
qqq $a x

(unquoted wildcard is
expanded)

6-4 Important UNIX Concepts

6.2 Command Entry

A UNIX command is either a built-in command or the name of an executable
file which the operating system will load and execute. When you see the
prompt, you can enter a command by typing the command name, any options
and arguments, followed by a carriage return.

Recall, the formats displayed in this manual use this font style to
indicate characters to be typed as is, and angle brackets <...> to indicate
arguments to be substituted. Arguments enclosed in square brackets, [...], are
optional.

After second
pass,
unquoted or
double
quoted
variables are
replaced by
their values.

echo 'q*
$a x'

(no variable replace-
ment due to quotes)

echo "q*
foo x"

(double-quoted vari-
able $a replaced
by value)

echo qq
qqq foo x

(unquoted variable
$a replaced by value)

After final
pass,
command
string is
broken up
according to
whitespace.
The separate
elements are
listed
vertically.

echo

'q* $a x'

(string treated as one
argument due to
quotes)

echo

q* foo x

(string treated as one
aregument due to
double quotes)

echo

qq

qqq

foo

x

(no quotes; each argu-
ment treated sepa-
rately)

When you
type in the
original
command,
the system
returns the
string:

q* $a x q* foo x qq qqq foo
x

a. This would be the second pass for C shell family; there were no ! characters to
replace.

Important UNIX Concepts 6-5

You should be aware that UNIX commands are not noted for their consistency
of format. Furthermore, commands, formats, arguments, and options may vary
slightly from one UNIX flavor to another. In this manual, we attempt to be as
generic as possible, and describe options that are widely available.

UNIX commands are described on-line in the man pages (see section 4.2 UNIX
On-Line Help).

6.2.1 Command Format

The basic format of UNIX commands is:

% command -option(s) argument(s)

where:

% is the (default, non-FUE) csh prompt.1

command is the UNIX command name of a utility or tool.

option(s) modifies how the command runs; options are nearly
always preceded by a dash and listed one after another.
See example below.

argument(s) specifies data or entities (usually files) on which the
command is to operate; arguments are separated by
blanks (“white space”).

Remember, UNIX is case-sensitive. Therefore UNIX commands must be
entered in the correct case. Most of the time commands are entered in lower
case.

The components are separated by at least one blank space. If an argument
contains a blank, enclose the argument in double quote marks. Normally,
options can be grouped; e.g., the -lw and the -l -w option specifications
are equivalent in the examples below (wc is a sample command; it lists line,
word, and/or character count of one or more files.):

% wc -lw <file1> <file2>

% wc -l -w <file1> <file2>

Some options can have arguments, and there isn’t consistency on whether there
should be a blank space between the option and its argument. Check the man
pages when you’re not sure. In the next example which shows the FORTRAN
f77 command, outputfile is the argument of the option -o:

% f77 -o <outputfile> <program.f>

Looping and conditional commands are also supported. These are more
advanced shell commands and are not covered in this manual. Consult a UNIX
text for information on these.

1. $ is the non-FUE default for Bourne shell.

6-6 Important UNIX Concepts

6.2.2 Miscellaneous Command Line Features

• To correct typos you can use the erase key (DELETE or BACKSPACE) to
erase character-by-character, or the KILL key to kill an entire line (see
section 9.2 Special Characters (Metacharacters)).

• More than one command can be entered on a line if the commands are
separated by semicolons. The commands will be executed sequentially.
See section 9.2 Special Characters (Metacharacters) for more
information on using multiple commands on one line.

• If you need to continue a command to a new line, you can either keep on
typing (without doing a carriage return), or enter a backslash (\) followed
directly by a carriage return (no space in-between) and then continue
typing on the next line. (Recall the backslash is used to prevent a special
character’s meaning to be interpreted by the shell. See section 6.2
Command Entry.)

• You can use parentheses to group commands. Since a subshell is created
for each group, this can be used to prevent changing the current
environment. It can also be used to redirect all output from the commands
considered as a group (see section 6.4.2 Standard Input and Output
Redirection).

• Type ahead works, even if the characters get interspersed with output.

6.3 Command Recall

Command recall is quite different in each shell. One common feature for all
shells that support command recall is the history mechanism. It maintains a
list of commands that have been entered and allows them to be reexecuted.
The history variable, set to some number at login time in the start-up files,
determines the number of commands that are saved in the list. The savehist
variable specifies how many commands are to be saved for your next session
after you log out. The history command displays the list of saved
commands:

% history

We discuss the following shells separately: csh, tcsh, and bash/ksh. There is no
command recall facility for sh.

csh

There is no command line editing native to csh. Before describing the standard
csh command recall facility, we should mention a Fermilab product called cedit
that we recommend for use with csh instead. It was designed to mimic VMS

Important UNIX Concepts 6-7

line editing, and turns out to provide similar command recall and editing
functionality to tcsh. To use cedit under FUE, you need to set it up initially.
Enter:

% setup cedit

To execute it, type:

% m

followed by <RETURN>. m stands for modify. Use the up or down arrow keys
to scroll to the desired command. The right and left arrow keys and your
backspace key allow you to edit the command before reexecuting it. There are
several control characters that perform functions within cedit. Typing
<CTRL-I> in cedit displays the available commands.

Recalling history commands using standard csh syntax is fairly easy. Use the
commands listed below.

For example, to reexecute the 4th command from the history list, enter:

% !4

and to reexecute the last command starting with ls:

% !ls

The dollar sign ($) can be used to recall the last word of a command. !$
causes substitution of the last word of the last command. For example, you can
check the contents of myfile.f and then compile it using the following
command sequence:

% less myfile.f

% f77 !$

A couple of nice features you can use with these reexecution commands are
preview (p) and substitute (s). To substitute a string in the previous command
and preview it before execution, use the syntax:

% !:p:s/<oldstring>/<newstring>

To do the same for the nth command in the history list, use:

% !<n>:p:s/<oldstring>/<newstring>

To execute after previewing (and/or substituting), simply type:

!! Reexecute the previous command

!<n> Reexecute command <n> from the history list

!<text> Reexecute the most recent command beginning with <text>

!?<text>? Reexecute the most recent command containing <text>

6-8 Important UNIX Concepts

% !!

tcsh

Recalling commands is easy if you are using tcsh. The up/down arrows on the
keyboard can be used to recall commands and the left/right arrows can be used
to move around within the command to edit it.

A command line correction algorithm is available in tcsh. To enable it, enter:

% set correct=all

This causes all words on the command line to be checked. If any part gets
corrected, the system notifies you, and gives you a chance to accept or reject it.
For example, say you type in:

% lz /usr/bin

The system will return with:
CORRECT ls /usr/bin (y|n|e|a|)?

Where y=yes, n=no, e=edit, and a=abort. You must provide one of these
responses.

To turn off command line correction, enter:

% set correct=none

ksh

Two styles of command recall are supported; emacs and vi. The style is
determined in one of two ways:

• include the line set -o <editor> in either your .profile or
.shrc file, where editor is either emacs or vi (this takes precedence
if variables below are set differently)

• set either the EDITOR or VISUAL environment variable to one of these
editors

When set to emacs, use the usual emacs commands to display and modify
previous commands, for instance <CTRL-P> for previous line. When set to vi,
command recall is initiated by typing the ESCAPE (or <CTRL-[>) key. Then all
the standard vi commands can be used. Some of the basic vi and emacs
commands are listed in section 10.3 Getting Started with the Editors.

bash

Both csh and ksh-style recall are supported.

Important UNIX Concepts 6-9

6.4 Important Concepts

This section attempts to provide an overview of a few of the important
concepts in UNIX which are very different from other systems and may
therefore be confusing to the novice user. In order to be able to make effective
use of UNIX, these concepts need to be understood.

6.4.1 Path

When you issue a command, the shell program parses the command line and
either processes it directly or searches for an executable file with that name in
any of the directories specified in your search path, which is controlled by the
variable PATH. See section 9.6 Some Important Variables for information on
the PATH variable. If the file is not found in any of the directories in your
search path, the shell reports that the command was not found. The file may
well be on the disk somewhere, but it is not in your path.

FullFUE (see section 1.3 The Fermi UNIX Environment (FUE) and Product
Support) attempts to provide an appropriate path, and we recommend that you
not change this basic path. However, feel free to add directories to it. For the
csh family, your .login file contains a set path line for the shell
variable path.1 Uncomment this line (remove the #) and include additional
directories in the shown format:

set path=($path /dir1 /dir2...)

Or change the environment variable PATH (also in .login), as follows:

setenv PATH "${PATH}:/dir1:/dir2"

For the sh family, uncomment and add directories to the PATH line in your
.profile file:

PATH=$PATH:/dir1:/dir2...

As an aside, if you add an executable to one of the directories in your search
path, it may be necessary for you to either log out and log back in, or to
recreate the internal tables used by the shell with the rehash (csh) or hash
(sh) command (see section 5.4 Shell Scripts).

1. Shell versus environment variables are discussed in section 9.5 Shell Variables and
Environment Variables.

6-10 Important UNIX Concepts

6.4.2 Standard Input and Output Redirection

The shell and many UNIX commands take their input from standard input
(stdin), write output to standard output (stdout), and write error output to
standard error (stderr). By default, standard input is connected to the
terminal keyboard and standard output and error to the terminal screen.

The way of indicating an end-of-file on the default standard input, a terminal,
is usually <CTRL-D>.

Redirection of I/O, for example to a file, is accomplished by specifying the
destination on the command line using a redirection metacharacter followed
by the desired destination.

C Shell Family

 Some of the forms of redirection for the C shell family are:

The form of a command with standard input and output redirection is as shown
below. We split it into several lines here in order to show clearly the use of the
< and > symbols, so as not to confuse them with the brackets surrounding
command line elements requiring substitution:

% <command> -[<options>] [<arguments>] \

< \

<inputfile> \

> \

<outputfile>

Character Action

> Redirect standard output

>& Redirect standard output and standard error

< Redirect standard input

>! Redirect standard output; overwrite file if it exists

>&! Redirect standard output and standard error; over-
write file if it exists

| Redirect standard output to another command (pipe)

>> Append standard output

>>& Append standard output and standard error

Important UNIX Concepts 6-11

If you are using csh and do not have the noclobber variable set (see section 9.6
Some Important Variables), using > and >& to redirect output will overwrite
any existing file of that name. Setting noclobber prevents this. Using >! and
>&! always forces the file to be overwritten. Use >> and >>& to append
output to existing files.

Redirection may fail under some circumstances: 1) if you have the variable
noclobber set and you attempt to redirect output to an existing file without
forcing an overwrite, 2) if you redirect output to a file you don’t have write
access to, and 3) if you redirect output to a directory.

Examples:

% who > names Redirect standard output to a file named names

% (pwd; ls -l) > outRedirect output of both commands to a file
named out

% pwd; ls -l > out Redirect output of ls command only to a file
named out

Input redirection can be useful, for example, if you have written a FORTRAN
program which expects input from the terminal but you want it to read from a
file. In the following example, myprog, which was written to read standard
input and write standard output, is redirected to read myin and write myout:

% myprog < myin > myout

You can suppress redirected output and/or errors by sending it to the null
device, /dev/null. The example shows redirection of both output and
errors:

% who >& /dev/null

To redirect standard error and output to different files, you can use grouping:

% (cat myfile > myout) >& myerror

Bourne Shell Family

The Bourne shell uses a different format for redirection which includes
numbers. The numbers refer to the file descriptor numbers (0 standard input, 1
standard output, 2 standard error). For example, 2> redirects file descriptor
2, or standard error. &<n> is the syntax for redirecting to a specific open file.
For example 2>&1 redirects 2 (standard error) to 1 (standard output); if 1 has
been redirected to a file, 2 goes there too. Other file descriptor numbers are
assigned sequentially to other open files, or can be explicitly referenced in the
shell scripts. Some of the forms of redirection for the Bourne shell family are:

Character Action

> Redirect standard output

6-12 Important UNIX Concepts

Note that < and > assume standard input and output, respectively, as the
default, so the numbers 0 and 1 can be left off. The form of a command with
standard input and output redirection is as shown below. We split it into
several lines here in order to show clearly the use of the < and > symbols,
so as not to confuse them with the brackets surrounding command line
elements requiring substitution:

% <command> -[<options>] [<arguments>] \

< \

<inputfile> \

> \

<outputfile>

Redirection may fail under some circumstances:

1) if you have the variable noclobber set and you attempt to redirect output
to an existing file without forcing an overwrite,

2) if you redirect output to a file you don’t have write access to, and

3) if you redirect output to a directory.

Examples:

$ who > names Direct standard output to a file named names

$ (pwd; ls -l) > outDirect output of both commands to a file named
out

$ pwd; ls -l > out Direct output of ls command only to a file
named out

Input redirection can be useful if you have written a FORTRAN program
which expects input from the terminal and you want to provide it from a file.
In the following example, myprog, which was written to read standard input
and write standard output, is redirected to read myin and write myout.

2> Redirect standard error

2>&1 Redirect standard error to standard output

< Redirect standard input

| Pipe standard output to another command

>> Append to standard output

2>&1| Pipe standard output and standard error to another
command

Character Action

Important UNIX Concepts 6-13

$ myprog < myin > myout

You can suppress redirected output and/or error by sending it to the null device,
/dev/null. The example shows redirection of standard error only:

$ who 2> /dev/null

To redirect standard error and output to different files (note that grouping is not
necessary in Bourne shell):

$ cat myfile > myout 2> myerror

6.4.3 Pipes

UNIX uses the concept of a pipe to connect the standard output of one program
directly into the standard input of another program. This is specified by
separating the two commands with the pipe operator, the vertical bar (|). The
general format is:

% <command1> | <command2> | ...

where, of course, each command can have options and arguments. To
implement pipes of commands, the shell forks off multiple processes. For
example if you run the command:

% history | more

the shell forks twice; the grandchild runs history, the child runs more
(after hooking up the right file descriptors to the right pipe ends), and the
parent shell waits for the process to finish. The history command, a
built-in, is implemented in the grandchild shell process directly, while the
more command requires an exec system call.

The tee command can be used to send output to a file as well as to another
command.

% who | tee whoout | sort

This creates a file named whoout which contains the original who output.
It also sorts the who output and sends it to standard output, the terminal
screen. The following example sends the (unsorted) who output to the file
and the screen:

% who | tee whoout

6.4.4 Filters

A filter is a command or program which gets its input from standard input,
sends its output to standard output, and may be used anywhere in a pipeline.
Examples of filters are the UNIX utilities:

• more (and less)

6-14 Important UNIX Concepts

• grep

• awk

• sort

The combination of UNIX filters grep, awk, and sort and the use of pipes is
very powerful.

more and less

The more filter allows you to display output on a terminal one screen at a time.
You press SPACEBAR to move to the following screen, and q to quit.

less is a much more flexible variant of the standard UNIX utility more and is
provided under FullFUE1. The command less lists the output (e.g.,
specified files) on the terminal screen by screen like the command more, but
in addition allows backward movement in the file (press b to go back one full
screen) as well as forward movement. You can also move a set number of lines
instead of a whole page. To view a file with the less filter, enter:

% less [<options>] [<filename>]...

The options and usage are described in the man pages for more and less.

1. FUE sets your environment variable PAGER to the less filter.

Important UNIX Concepts 6-15

After displaying a page of information, more and less display a colon prompt
(:) at the bottom of the screen and wait for instructions.

You can search for patterns in the file by entering /<pattern> at the less
prompt. Continue to search for the same pattern using a slash (/). A further
advantage is that less does not have to read the entire input file before starting,
so with large input files it starts up faster than text editors like vi.

 LESS(1) UNIX System V
LESS(1)

 NAME

 less - opposite of more

 SYNOPSIS

 less [-[+]aABcCdeEimMnqQuUsw] [-bN] [-hN]
[-xN] [-[z]N]

 [-P[mM=]string] [-[lL]logfile] [+cmd]

 [-ttag] [filename]...

 DESCRIPTION

 Less is a program similar to more (1), but
which allows

 backwards movement in the file as well as
forward movement.

 Also, less does not have to read the
entire input file

 before starting, so with large input files
it starts up

 faster than text editors like vi (1).
Less uses termcap (or

 terminfo on some systems), so it can run
on a variety of

 terminals. There is even limited support
for hardcopy

:

6-16 Important UNIX Concepts

grep

The grep filter searches the contents of one or more files for a pattern and
displays only those lines matching that pattern. grep is described in Section
7.4.2 Search for a Pattern: grep.

awk

awk is much more than a filter; it is a powerful pattern scanning and
processing language. Although you will need to spend a little time learning
how to use awk, it is very well suited to data-manipulation tasks. It handles
internally what you would have to handle laboriously in a language like C or
FORTRAN. You can do in a few lines what would take many, many lines of
FORTRAN.

awk works best when the data it operates on has some structure, for example a
document with heading levels, or a table. In the case of a table, you can tell it
the field separator (spaces, colons, commas, tabs) and it can align and interpret
the contents of the field according to the way you use it. Or you can reorder
the columns, or change rows into columns and vice-versa.

We present here some very basic information to get you acquainted with the
concepts of awk, but you will need a more in-depth reference in order to use
this utility. A widely-available book on awk is The awk Programming
Language by Aho, Kernighan, and Weinberger, Addison-Wesley. Another
good reference, from which much of the information in the present section is
extracted, is sed & awk published by O’Reilly & Associates.

sort

sort sorts the lines of the specified files, typically in alphabetical order. Using
the -m option it can merge sorted input files. Its syntax is:

% sort [<options>] [<field-specifier>] [<filename(s)>]

For example, start with the personnel file contents:

Run the command:

% sort personnel

John Smith 75 South Ave., Denver, CO 80145

Alice Jones 834 S. Jefferson St., Batavia, IL 60510

Mary Fahey 901 California St., San Francisco, CA
94121

Eric Smith 24 Birch St., Albert City, IA 50510

Important UNIX Concepts 6-17

to reorder the file contents as follows:

sort is very easy to use. Read the man page for sort to see what the available
options are and how to specify the sort fields. If a field is not specified, the sort
key is the entire line. The sorted output goes to standard output by default.

6.4.5 Regular Expressions

A regular expression is a string composed of letters, numbers, and special
symbols that defines one or more strings. They are used to specify text patterns
for searching.

A regular expression is said to match any string it defines. The major
capabilities include:

1) match single characters or strings of characters

2) match any arbitrary character

3) match classes of characters

4) match specified patterns only at the start or end of a line

5) match alternative patterns

Regular expressions are used by vi, grep, and awk (and at least a couple of
utilities not covered in this manual, for instance ed and sed). grep in fact
stands for global regular expression printer. For a complete discussion of
regular expressions, refer to a UNIX text. To get you started, we include a
table of special characters that can be used in expressions.

Note that regular expression special characters are different from those
used in filename expansion.

. Matches any single character

Example: .ing matches all strings with any
character preceding ing; singing, ping

* Represents 0 or more occurrences of the preceding
character

Example: ab*c matches a followed by 0 or
more b’s followed by c; ac, abc, abbbbbc

Alice Jones 834 S. Jefferson St., Batavia, IL 60510

Eric Smith 24 Birch St., Albert City, IA 50510

John Smith 75 South Ave., Denver, CO 80145

Mary Fahey 901 California St., San Francisco, CA
94121

6-18 Important UNIX Concepts

.* Matches any string of characters (. matches any
character, * matches any number of occurrences of the
preceding regular expression)

$ Placed at the end of a regular expression, matches the
end of a line

Example: ay$ matches ay at the end of a line; ...
today

^ Placed at the beginning of a regular expression, matches
the beginning of a line

Example: ^T matches a T at the beginning of a
line; Today ...

" Delimits operator characters to prevent interpretation

\ Turns off special meaning of the following single
character (\ is often called a quote character)

[] Specifies character classes

[...] Matches any one of the characters enclosed in square
brackets

Example: [bB]ill matches bill or Bill

There is an extended set of special characters available for full regular
expressions, including for example ? and +. These can be used in egrep and
awk. Refer to a UNIX book for information.

6.5 Job Control

Any command you give to the shell (true for all shells except sh) is a job and is
given a job number. A single command is the simplest job. A series of
commands separated by semicolons, or commands piped together, create a
single job. A script also creates a single job. A job may consist of many
processes, because each command is a process.

The job stays with its environment, for example, the current directory. If you
subsequently change directories after putting a job in the background and then
resume the background job, you will be in the original directory again.

Job control allows you to work on several jobs at once, switching back and
forth between them at will, and it allows you to stop, start, and kill them.
When you start up a job interactively, it is by default in the foreground and
attached to your terminal. You can move that job into the background so you
can start up another job or observe another job that is already running. You can
move any background job into the foreground so it is once again attached to

Important UNIX Concepts 6-19

your terminal. You can run any number of background jobs at any one time,
but there can be only one foreground job. The use of multiple windows on a
GUI makes much of this transparent.

6.5.1 Priority

You can control the priority of a command or shell with the shell command
nice:

% nice [+<n> |-<n>] [<command>]

<n> is the value by which you want to increase or decrease priority. Values
range from 1 to 19, with the default typically at 10 (values and defaults vary by
OS). The higher the nice value, the lower the priority of a process, and the
slower it runs. (You are being nicer to other users!) If no number is specified,
nice sets the priority to the OS default. If <command> is omitted, the
priority is set for the current shell. If <command> is specified, it is run at the
specified (or default) priority in a sub-shell. You can use nice to lower the
priority of a command or shell that makes large demands on the system but
isn’t needed right away.

Note that another nice command exists, /bin/nice. It is not a built-in
shell command. If you do man nice, you will get information on this one.
In order to get information on the C shell command nice, do man csh.

6.5.2 Background, Foreground, and Suspended Jobs

You run jobs in the background so that you can perform other tasks in the
foreground (i.e., interactively). Jobs are always in one of three states: running
in the foreground, running in the background, or suspended. Any job intended
to run in the background should have its output and error redirected to a file.

There are two ways to put jobs into the background:

Using the & Metacharacter

One way to start a job in the background is to append the ampersand
metacharacter (&) to the end of the command line. In the first example, the
standard output is redirected via > to a file (in this case, the syntax is valid for
both shell families):

% <command> > <outputfile> &

In the next example note that the parentheses are necessary in order to send
both commands to the background:

% (<command1>; <command2>) &

6-20 Important UNIX Concepts

The shell prints a line indicating the job number and process ID of its top-level
commands, and the job is started as a background job.

Using the Suspend Control Character

The other way is to use the suspend control character, called susp or swtch, (see
section 9.1 Special Keys) which is usually assigned to <CTRL-Z>. It stops or
suspends the foreground (the currently running interactive) job, moving it to
the background; it does not kill it.

After stopping a job, you can either resume it with the fg command or make
it run in the background with the bg command (see below). You may want to
stop a job temporarily to do another task and then return to it interactively, or
you may want to stop it in order to let it finish as a background job.

When a background job terminates, this is reported just before the next prompt
(so the message doesn’t interrupt the current foreground job).

A background job will stop if it tries to read from the terminal. If output is not
redirected, a background job can either (continue to) send output to the
terminal or be stopped if it attempts to write to the terminal. The following
command can be used to toggle this behavior:

% stty [-]tostop

The minus indicates negation, meaning that background jobs will continue to
run even if they attempt to write output to the terminal and that the output will
appear on the terminal screen. However, programs which attempt to
interrogate or change the mode of the terminal will be blocked when they are
not in the foreground whether or not tostop is set.

Listing Jobs

The jobs command lists your jobs:

% jobs [-l]

This command lists the background jobs, their job number, status, and the
command being executed. A plus sign in the output means that job is current
(in control of your terminal), a minus sign means that job is next. Current and
next refer to its relation to the foreground (see fg). The -l option lists the
process ID as well.

Commands Used for Controlling Jobs

There are a number of commands to control jobs: fg, bg, stop, kill.
All of them can take an argument which specifies the particular job, or they can
have no argument. The argument can take two basic forms: a simple process
ID number (as displayed by ps) or a form prefixed with a percent sign (%). If
no argument is given, the current job is acted upon.

Important UNIX Concepts 6-21

The % form of the argument can be %- where - indicates the previous job,
%<n> where <n> is the job number as displayed by the jobs command,
%<pref> where <pref> is some unique prefix of the command name and
arguments of one of the jobs, or %?<str> where <str> is some unique
string in one of the jobs.

You can use the fg command to move a suspended or background job into
the foreground (note that the first % on a line represents the default csh
prompt; ones that follow are part of the command):

% [fg] %[<job>]

The fg is not mandatory. If the job specification is omitted, the current job
will be brought into the foreground, and the next job becomes current.

Examples:

% fg %5 Bring job number 5 into the foreground

% %1 Bring job number 1 into the foreground

% % Bring the current job into the foreground

After stopping a foreground job, you can start it running in the background
with the bg command. bg puts the current or specified jobs into the
background, continuing them if they were stopped. In the following
commands, <job> stands for job number.

% bg %[<job>]

We described above how to stop (suspend) a foreground job with the suspend
control character (<CTRL-Z>). Similarly, you can suspend a background job
with the stop command:

% stop %<job>

You can abort a suspended or background job with the kill command:

% kill %<job>

If you attempt to exit a shell (logout) when there are stopped jobs, you will get
a warning message. A second logout will log you out if you choose not to
see what jobs are stopped before you exit. In the C shell family, background
jobs will continue running after you log out.

6.5.3 Scheduling Jobs: at and cron

UNIX provides two methods for running jobs at some specified time.

at

The first is the at utililty. This allows the user to queue a job for later
execution.

6-22 Important UNIX Concepts

The format of the at command is:

% at <time> [<date>] [+<increment>]

at reads the commands from standard input. Standard output and standard
error output will be mailed to you unless they are redirected.

The shell saves the environment variables and the working directory that are in
effect at the time you submit the job and makes them available when the job is
executed.

• The <time> can include 1, 2, or 4 numbers. One or two digits is
assumed to be hours, four digits to be hours and minutes. It can be
specified as two numbers separated by a colon (hours:minutes), either in
24-hour format or with am or pm appended. The names noon, midnight,
now, and next are recognized.

• The <date> is either a month name followed by a day number (and
optionally a year number followed by an optional comma) or a day of the
week (fully spelled out or abbreviated to three characters). The words
today and tomorrow are known. If no date is given, today is assumed if
the hour is greater than the current hour and tomorrow if it is less.

• The optional <increment> is a number suffixed by minutes, hours,
days, weeks, or years in singular or plural form.

Examples:

% at 8

% at 0800

% at 8:00am Jan 24

% at now + 1 minute

at reads from standard input, meaning you type in the commands (there may or
may not be a prompt). When you are finished, terminate input with <CTRL-D>
followed by a carriage return.

You can also redirect the input to a file of commands, for example:

% at now + 1 hour < myscript

at runs in the Bourne shell (sh) by default. If you need to force it to run in C
shell, you can use the trick illustrated in the following interactive example:

% /bin/csh << xxxxx

? at now + 2 minutes

? source .cshrc

? alias > aout

? <CTRL-D> (followed by carriage return)

Important UNIX Concepts 6-23

The first line causes csh (C shell) to read the following lines up to xxxxx or
to the end-of-file. There is no xxxxx, of course, so it reads until you give it
the <CTRL-D>. The third line runs your .cshrc. It is an illegal Bourne shell
command, therefore you can tell at ran in the C shell and that your .cshrc
file was executed. You will receive a message similar to the following, and the
results will be mailed to you (alas, at will say it’s using /bin/sh even if
you’ve “tricked” it):

warning: commands will be executed using /bin/sh

job 826157640.a at Wed Mar 6 18:14:00 1996

After 2 minutes, aout is mailed to you. It contains a list of all the aliases
defined in your .cshrc file. If you are running a script using at then the
script will be run under whatever shell you specify in the script.

For example, say you run:

% at now + 2 minutes

? <script>

? <CTRL-D> (followed by carriage return)

where <script> is a file that contains the line #!/bin/csh at the
beginning. The commands in the script will execute under csh.

cron

The second method for running jobs at some specified time is the crontab
command. It is designed for jobs that need to be run on a regular basis, e.g.,
once a night, or once per week. Note that cron, like at, uses the Bourne shell
so that output redirection must be specified using Bourne shell syntax. Scripts
will be run under what ever shell is specified in the script. If no shell is
specified then Bourne shell is used.

There are Kerberos authentication issues associated with running programs
that spawn jobs external to your login process group (Kerberos authentication
is described in Chapter 3: Logging into UNIX Systems at Fermilab). cron
sometimes falls into this category. You can run the job, but it will not run with
authentication, and most likely will not be able to write into /afs space.

The kcroninit product is provided for setting up cron jobs in a Kerberized
environment. It gets installed automatically as part of the kerberos product, and
as of kerberos v0_6, it works without systools. kcroninit creates the necessary
cron principal and keytab file so that cron jobs may be authenticated to
Kerberos under the user's principal. kcroninit can be used on each node where
cron jobs need to be authenticated, either for AFS tokens or for remote access
to other Kerberos systems. For more information, see the Strong
Authentication at Fermilab manual section 10.3.1 Specific-User Processes
(cron Jobs).

The format of the cron command is:

6-24 Important UNIX Concepts

% crontab [<filename>]

% crontab [<options>]

where <filename> is the name of a file containing the commands that you
want to have executed. If you do not specify a file, then crontab will read
commands from standard input as you type them, ending with <CTRL-D>, and
the commands will be run in Bourne shell. The system utility cron reads the
crontab file and runs the commands. Standard output and standard error will
be mailed to you unless they are redirected.

The command can also take the following options:

-r remove crontab file

-l list contents of crontab file

A cron file consists of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns that specify the following:

• minute (0-59)

• hour (0-23)

• day of the month (1-31)

• month of the year (1-12)

• day of the week (0-6 with 0=Sunday)

If an asterisk appears in a field instead of a number, cron interprets that as a
wildcard for all possible values. The sixth field of a line in a cron file is a
string that is executed by the shell at the specified times.

Examples:

The user creates a cron file myfile, and runs crontab:

% crontab myfile

This command will perform an incremental backup at 10pm Monday to
Thursday and a full backup at 10pm on Friday.

#Myfile

Run script that archives to 8mm tape for backup.

Monday-Thursday at 2200 backup everything that
has been

changed. Every Friday at 2200 backup everything.

0 22 * * 1-4 /usr/buckley/daily
1>>/usr/buckley/cron/backup.log 2>&1

0 22 * * 5 /usr/buckley/weekly
1>>/usr/buckley/cron/backup.log 2>&1

